Skip to content

Wrappers

Glaze provides a number of wrappers that indicate at compile time how a value should be read and/or written. These wrappers allow you to modify the read/write behavior of a type without affecting your C++ class.

Available Wrappers

glz::append_arrays<&T::x> // When reading into an array that is appendable, the new data will be appended rather than overwrite
glz::bools_as_numbers<&T::x> // Read and write booleans as numbers
glz::cast<&T::x, CastType> // Casts a value to and from the CastType, which is parsed/serialized
glz::quoted_num<&T::x> // Read and write numbers as strings
glz::quoted<&T::x> // Read a value as a string and unescape, to avoid the user having to parse twice
glz::string_as_number<&T::x> // Read a string as a number and writes the string as a number
glz::unquoted<&T::x> // Write out string like types without quotes
glz::raw_string<&T::string> // Do not decode/encode escaped characters for strings (improves read/write performance)
glz::escaped<&T::string> // Opposite of glz::raw_string, it turns off this behavior
glz::escape_bytes_t<T> // A wrapper type for local use to treat char array or vector as byte sequence to be fully escaped (prevents null termination truncation)
glz::escape_bytes<&T::x> // For meta usage: treats char array or vector as byte sequence to be fully escaped (prevents null termination truncation)

glz::read_constraint<&T::x, constraint_function, "Message"> // Applies a constraint function when reading

glz::max_length<&T::x, N> // Limits string length or array size to N when reading (BEVE format)

glz::partial_read<&T::x> // Reads into only existing fields and elements and then exits without parsing the rest of the input

glz::invoke<&T::func> // Invoke a std::function, lambda, or member function with n-arguments as an array input

glz::write_float32<&T::x> // Writes out numbers with a maximum precision of float32_t
glz::write_float64<&T::x> // Writes out numbers with a maximum precision of float64_t
glz::write_float_full<&T::x> // Writes out numbers with full precision (turns off higher level float precision wrappers)
glz::float_format<&T::x, "{:.2f}"> // Format floats using std::format syntax (C++23)

glz::custom<&T::read, &T::write> // Calls custom read and write std::functions, lambdas, or member functions
glz::manage<&T::x, &T::read_x, &T::write_x> // Calls read_x() after reading x and calls write_x() before writing x
glz::as_array<&T::member> // Treat a reflected/member-annotated type as a positional array for read and write

Associated glz::opts

glz::opts is the compile time options struct passed to most of Glaze functions to configure read/write behavior. Many wrappers are associated with compile time options that can be set via a custom options struct inheriting from glz::opts.

[!NOTE] Options like quoted_num, string_as_number, unquoted, raw_string, and structs_as_arrays are inheritable options - they are not part of the default glz::opts struct. To use them globally, add them to a custom options struct:

struct my_opts : glz::opts {
   bool quoted_num = true;      // treat numbers as quoted strings
   bool string_as_number = true; // treat strings as numbers
   bool unquoted = true;         // write without quotes
   bool raw_string = true;       // skip escape processing
   bool structs_as_arrays = true; // serialize structs as arrays
};

append_arrays

When reading into an array that is appendable, the new data will be appended rather than overwrite

Associated option: add bool append_arrays = true; to a custom options struct (for example, struct append_arrays_opts : glz::opts { bool append_arrays = true; };).

struct append_obj
{
   std::vector<std::string> names{};
   std::vector<std::array<int, 2>> arrays{};
};

template <>
struct glz::meta<append_obj>
{
   using T = append_obj;
   static constexpr auto value = object("names", append_arrays<&T::names>, "arrays", append_arrays<&T::arrays>);
};

In use:

append_obj obj{};
expect(not glz::read_json(obj, R"({"names":["Bob"],"arrays":[[0,0]]})"));
expect(obj.names == std::vector<std::string>{"Bob"});
expect(obj.arrays == std::vector<std::array<int, 2>>{{0,0}});

expect(not glz::read_json(obj, R"({"names":["Liz"],"arrays":[[1,1]]})"));
expect(obj.names == std::vector<std::string>{"Bob", "Liz"});
expect(obj.arrays == std::vector<std::array<int, 2>>{{0,0},{1,1}});

bools_as_numbers

Read and write booleans as numbers

Associated option: add bool bools_as_numbers = true; to a custom options struct (for example, struct bools_as_numbers_opts : glz::opts { bool bools_as_numbers = true; };).

struct bools_as_numbers_struct
{
   bool a{};
   bool b{};
   bool c{};
   bool d{};

   struct glaze {
      using T = bools_as_numbers_struct;
      static constexpr auto value = glz::object("a", glz::bools_as_numbers<&T::a>, "b", glz::bools_as_numbers<&T::b>, &T::c, &T::d);
   };
};

In use:

std::string s = R"({"a":1,"b":0,"c":true,"d":false})";
bools_as_numbers_struct obj{};
expect(!glz::read_json(obj, s));
expect(obj.a == true);
expect(obj.b == false);
expect(glz::write_json(obj) == s);

bools_as_numbers from glz::opts

You don't have to use wrappers if you want the global behavior to handle booleans as numbers.

std::string s = R"([1,0,1,0])";
std::array<bool, 4> obj{};
struct bools_as_numbers_opts : glz::opts
{
   bool bools_as_numbers = true;
};
constexpr bools_as_numbers_opts opts{};
expect(!glz::read<opts>(obj, s));
expect(glz::write<opts>(obj) == s);

cast

glz::cast is a simple wrapper that will serialize and deserialize the cast type rather than underlying type. This enables the user to parse JSON for a floating point value into an integer, or perform similar static_cast behaviors.

struct cast_obj
{
   int integer{};
};

template <>
struct glz::meta<cast_obj>
{
   using T = cast_obj;
   static constexpr auto value = object("integer", cast<&T::integer, double>);
};

In use:

cast_obj obj{};
std::string buffer = R"({"integer":5.7})";
expect(not glz::read_json(obj, buffer));
expect(obj.integer == 5);

When a cast-backed type is used as a key in a map (for example std::map<MyId, T>), BEVE now recognises the wrapper and emits the same header as the cast target. This means strong-ID wrappers can be reused across JSON, TOML, and BEVE without specialising custom read/write logic.

quoted_num

Read and write numbers as strings.

Associated option: add bool quoted_num = true; to a custom options struct (for example, struct quoted_num_opts : glz::opts { bool quoted_num = true; };).

struct foo {
  int x{};
};

template <>
struct glz::meta<foo> {
  using T = foo;
  static constexpr auto value = object("x", quoted_num<&T::x>);
};

In use:

std::string input = R"({ "x": "5" })";
foo obj{};
expect(!glz::read_json(obj, input));
expect(glz::write_json(obj) == R"({ "x": "5" })");

quoted_num is more efficient than quoted for numbers.

quoted

When reading, first reads a value as a string, which unescapes, and then reads the value normally. When writing, will first write the value as a string and then write the string to produce escapes.

glz::quoted is useful for storing escaped JSON inside of a higher level JSON object.

struct client_state
{
   uint64_t id{};
   std::map<std::string, std::vector<std::string>> layouts{};
};

template <>
struct glz::meta<client_state>
{
   using T = client_state;
   static constexpr auto value = object("id", &T::id, "layouts", quoted<&T::layouts>);
};

In use:

client_state obj{};
std::string input = R"({
"id": 4848,
"layouts": "{\"first layout\": [ \"inner1\", \"inner2\" ] }"
})";
expect(!glz::read_json(obj, input));
expect(obj.id == 4848);
expect(obj.layouts.at("first layout") == std::vector<std::string>{"inner1", "inner2"});

std::string out{};
glz::write_json(obj, out);
expect(out == R"({"id":4848,"layouts":"{\"first layout\":[\"inner1\",\"inner2\"]}"})");

as_array

Convert a positional JSON array into an existing struct while writing back out as an array. Use glz::as_array<&T::member> when declaring the member in glz::object. Handy when a service sends compact arrays but your C++ type is a struct in memory.

struct Person_details
{
   std::string_view name;
   std::string_view surname;
   std::string_view city;
   std::string_view street;
};

struct Person
{
   int id{};
   Person_details person{};
};

template <>
struct glz::meta<Person>
{
   using T = Person;
   static constexpr auto value = glz::object(
      "id", &T::id,
      "person", glz::as_array<&T::person>
   );
};

std::string payload = R"({
   "id": 1,
   "person": ["Joe", "Doe", "London", "Chamber St"]
})";

Person p{};
expect(!glz::read_json(p, payload));
expect(p.person.city == "London");

auto written = glz::write_json(p).value();
expect(written ==
       R"({"id":1,"person":["Joe","Doe","London","Chamber St"]})"
);

string_as_number

Read JSON numbers into strings and write strings as JSON numbers.

Associated option: add bool string_as_number = true; to a custom options struct (for example, struct string_as_number_opts : glz::opts { bool string_as_number = true; };).

struct numbers_as_strings
{
   std::string x{};
   std::string y{};
};

template <>
struct glz::meta<numbers_as_strings>
{
   using T = numbers_as_strings;
   static constexpr auto value = object("x", glz::string_as_number<&T::x>, "y", glz::string_as_number<&T::y>);
};

In use:

std::string input = R"({"x":555,"y":3.14})";
numbers_as_strings obj{};
expect(!glz::read_json(obj, input));
expect(obj.x == "555");
expect(obj.y == "3.14");

std::string output;
glz::write_json(obj, output);
expect(input == output);

unquoted

Write out string like types without quotes.

Useful for when a string is already in JSON format and doesn't need to be quoted.

Associated option: add bool unquoted = true; to a custom options struct (for example, struct unquoted_opts : glz::opts { bool unquoted = true; };).

struct unquoted_struct
{
   std::string str{};
};

template <>
struct glz::meta<unquoted_struct>
{
   using T = unquoted_struct;
   static constexpr auto value = object("str", glz::unquoted<&T::str>);
};

In use:

suite unquoted_test = [] {
  unquoted_struct obj{.str = R"("Hello")"};
  // quotes would have been escaped if str were not wrapped with unquoted
  expect(glz::write_json(obj) == R"({"str":"Hello"})");
};

raw_string

Do not decode/encode escaped characters for strings (improves read/write performance).

If your code does not care about decoding escaped characters or you know your input will never have escaped characters, this wrapper makes reading/writing that string faster.

Associated option: add bool raw_string = true; to a custom options struct (for example, struct raw_string_opts : glz::opts { bool raw_string = true; };).

struct raw_stuff
{
   std::string a{};
   std::string b{};
   std::string c{};

   struct glaze
   {
      using T = raw_stuff;
      static constexpr auto value = glz::object(&T::a, &T::b, &T::c);
   };
};

struct raw_stuff_wrapper
{
   raw_stuff data{};

   struct glaze
   {
      using T = raw_stuff_wrapper;
      static constexpr auto value{glz::raw_string<&T::data>};
   };
};

In use:

raw_stuff_wrapper obj{};
std::string buffer = R"({"a":"Hello\nWorld","b":"Hello World","c":"\tHello\bWorld"})";

expect(!glz::read_json(obj, buffer));
expect(obj.data.a == R"(Hello\nWorld)");
expect(obj.data.b == R"(Hello World)");
expect(obj.data.c == R"(\tHello\bWorld)");

buffer.clear();
glz::write_json(obj, buffer);
expect(buffer == R"({"a":"Hello\nWorld","b":"Hello World","c":"\tHello\bWorld"})");

escaped

The glz::escaped wrapper turns off the effects of glz::raw_string.

struct raw_stuff_escaped
{
   raw_stuff data{};

   struct glaze
   {
      using T = raw_stuff_escaped;
      static constexpr auto value{glz::escaped<&T::data>};
   };
};

In use:

raw_stuff_escaped obj{};
std::string buffer = R"({"a":"Hello\nWorld"})";

expect(!glz::read_json(obj, buffer));
expect(obj.data.a ==
       R"(Hello
World)");

buffer.clear();
glz::write_json(obj, buffer);
expect(buffer == R"({"a":"Hello\nWorld","b":"","c":""})");

escape_bytes

The glz::escape_bytes_t wrapper (for local usage) and glz::escape_bytes (for meta usage) are used to read and write binary data stored in character arrays (char[]) or vectors (std::vector<char>) as fully escaped JSON strings. This is particularly useful for handling binary data that might contain null characters or other control characters that would otherwise be truncated or cause issues.

Meta Usage (glz::escape_bytes<&T::member>):

struct binary_data
{
   char data[4];
};

template <>
struct glz::meta<binary_data>
{
   using T = binary_data;
   static constexpr auto value = object("data", glz::escape_bytes<&T::data>);
};

In use:

binary_data obj;
obj.data[0] = 0;
obj.data[1] = 1;
obj.data[2] = 0;
obj.data[3] = 2;

std::string out;
glz::write_json(obj, out);
expect(out == R"({"data":"\u0000\u0001\u0000\u0002"})");

binary_data obj2;
glz::read_json(obj2, out);
expect(std::memcmp(obj.data, obj2.data, 4) == 0);

Local Usage (glz::escape_bytes_t{value}):

char local_data[4] = {0, 'A', 0, 'B'};
std::string out;
glz::write_json(glz::escape_bytes_t{local_data}, out);
expect(out == R"("\u0000A\u0000B")");

char read_back_data[4];
glz::read_json(glz::escape_bytes_t{read_back_data}, out);
expect(read_back_data[0] == 0);
expect(read_back_data[1] == 'A');
expect(read_back_data[2] == 0);
expect(read_back_data[3] == 'B');

read_constraint

Enables complex constraints to be defined within a glz::meta or using member functions. Parsing is short circuited upon violating a constraint and a nicely formatted error can be produced with a custom error message.

Field order and optional members

Object members are visited in the order that the JSON input supplies them. This is an intentional design choice so that input streams do not have to be re-ordered to match the declaration order. Because of this, a read_constraint may only rely on fields that have already appeared in the JSON payload. If you need to validate the final state of the entire object, use a self_constraint as shown below—those run after every field has been read.

Optional members are parsed lazily: if the JSON payload does not contain the key, the member is left untouched and the corresponding read_constraint is not evaluated. This guarantees that absent optional data does not trigger constraints. Keep in mind that reusing the same C++ object across multiple reads will retain the previous value for any field that is omitted in later payloads, so reset or re-initialize the instance when you expect fresh state.

struct constrained_object
{
   int age{};
   std::string name{};
};

template <>
struct glz::meta<constrained_object>
{
   using T = constrained_object;
   static constexpr auto limit_age = [](const T&, int age) { return (age >= 0 && age <= 120); };

   static constexpr auto limit_name = [](const T&, const std::string& name) { return name.size() <= 8; };

   static constexpr auto value = object("age", read_constraint<&T::age, limit_age, "Age out of range">, //
                                        "name", read_constraint<&T::name, limit_name, "Name is too long">);
};

Object level validation

To validate combinations of fields after the object has been fully deserialized, provide a single self_constraint entry. This constraint runs once after all object members have been populated and can therefore reason about the final state.

struct cross_constrained
{
   int age{};
   std::string name{};
};

template <>
struct glz::meta<cross_constrained>
{
   using T = cross_constrained;

   static constexpr auto combined = [](const T& v) {
      return ((v.name.starts_with('A') && v.age > 10) || v.age > 5);
   };

   static constexpr auto value = object(&T::age, &T::name);
   static constexpr auto self_constraint = glz::self_constraint<combined, "Age/name combination invalid">;
};

You can perform more elaborate business logic as well, such as validating that user credentials are consistent and secure:

struct registration_request
{
   std::string username{};
   std::string password{};
   std::string confirm_password{};
   std::optional<std::string> email{};
};

template <>
struct glz::meta<registration_request>
{
   using T = registration_request;

   static constexpr auto strong_credentials = [](const T& value) {
      const bool strong_length = value.password.size() >= 12;
      const bool matches = value.password == value.confirm_password;
      const bool has_username = !value.username.empty();
      return strong_length && matches && has_username;
   };

   static constexpr auto value = object(
      &T::username,
      &T::password,
      &T::confirm_password,
      &T::email);

   static constexpr auto self_constraint = glz::self_constraint<strong_credentials,
      "Password must be at least 12 characters and match confirmation">;
};

If a self constraint fails, deserialization stops and glz::error_code::constraint_violated is reported with the associated message.

When it is important that object memory remains valid after every individual assignment—for example, when other code observes the partially constructed object during parsing—prefer read_constraint on the specific members. Those constraints fire before the member is written, so the in-memory representation never stores an invalid value. In contrast, self_constraint runs after fields are populated, so it can detect issues that span multiple members but the object may hold the problematic data until the constraint handler reports an error.

Skipping self_constraint validation

In some cases you may want to skip self_constraint validation—for example, when performance is critical and the data is known to be valid, or when validation should be deferred to a later stage. You can disable self_constraint checks by creating a custom options struct with skip_self_constraint = true:

struct skip_constraint_opts : glz::opts
{
   bool skip_self_constraint = true;
};

// Use it like this:
constexpr skip_constraint_opts opts{};
auto ec = glz::read<opts>(obj, buffer);

With this option enabled, the self_constraint is still defined in glz::meta<T> but will not be evaluated during deserialization. This allows you to toggle validation on or off at compile time based on your use case.

max_length

Limits string length or array/vector size when reading from binary formats (currently BEVE). This wrapper provides per-field control over allocation limits to prevent memory exhaustion from malicious or malformed input.

For strings (std::string), limits the maximum character count. For arrays/vectors, limits the maximum element count.

struct user_input
{
   std::string username;
   std::string bio;
   std::vector<int> scores;
   std::vector<std::string> tags;
};

template <>
struct glz::meta<user_input>
{
   using T = user_input;
   static constexpr auto value = object(
      "username", glz::max_length<&T::username, 64>,    // Max 64 characters
      "bio", &T::bio,                                    // No limit
      "scores", glz::max_length<&T::scores, 100>,       // Max 100 elements
      "tags", glz::max_length<&T::tags, 10>             // Max 10 strings
   );
};

In use:

user_input obj{};
std::string buffer;

// Valid data within limits
user_input valid{.username = "alice", .bio = "Hello!", .scores = {95, 87, 92}, .tags = {"cpp", "glaze"}};
glz::write_beve(valid, buffer);

auto ec = glz::read_beve(obj, buffer);
expect(!ec); // Success

// Data exceeding limits
user_input oversized{.username = std::string(100, 'x'), .bio = "", .scores = {}, .tags = {}};
buffer.clear();
glz::write_beve(oversized, buffer);

ec = glz::read_beve(obj, buffer);
expect(ec.ec == glz::error_code::invalid_length); // Rejected - username exceeds 64 chars

Works with complex types

The wrapper also works with arrays of complex structs:

struct item
{
   std::string name;
   int value;
   std::vector<double> data;
};

struct container
{
   std::vector<item> items;
};

template <>
struct glz::meta<container>
{
   using T = container;
   static constexpr auto value = object(
      "items", glz::max_length<&T::items, 50>  // Max 50 complex items
   );
};

Associated options

For global limits (applying to all strings/arrays), use custom options instead:

struct secure_opts : glz::opts
{
   uint32_t format = glz::BEVE;
   size_t max_string_length = 1024;    // Max 1KB per string
   size_t max_array_size = 10000;      // Max 10,000 elements per array
};

auto ec = glz::read<secure_opts{}>(obj, buffer);

See Security for more details on allocation limits and DoS prevention.

partial_read

Reads into existing object and array elements and then exits without parsing the rest of the input. More documentation concerning partial_read can be found in the Partial Read documentation.

partial_read is useful when parsing header information before deciding how to decode the rest of a document. Or, when you only care about the first few elements of an array.

invoke

Invoke a std::function or member function with n-arguments as an array input.

struct invoke_struct
{
   int y{};
   std::function<void(int x)> square{};
   void add_one() { ++y; }

   // MSVC requires this constructor for 'this' to be captured
   invoke_struct()
   {
      square = [&](int x) { y = x * x; };
   }
};

template <>
struct glz::meta<invoke_struct>
{
   using T = invoke_struct;
   static constexpr auto value = object("square", invoke<&T::square>, "add_one", invoke<&T::add_one>);
};

In use:

std::string s = R"(
{
    "square":[5],
    "add_one":[]
})";
invoke_struct obj{};
expect(!glz::read_json(obj, s));
expect(obj.y == 26); // 5 * 5 + 1
};

write_float32

Writes out numbers with a maximum precision of float32_t.

struct write_precision_t
{
   double pi = std::numbers::pi_v<double>;

   struct glaze
   {
      using T = write_precision_t;
      static constexpr auto value = glz::object("pi", glz::write_float32<&T::pi>);
   };
};

[!IMPORTANT]

The glz::float_precision float_max_write_precision is not a core option in glz::opts. You must create an options structure that adds this field to enable float precision control. The example below shows this user defined options struct that inherits from glz::opts.

In use:

struct float_opts : glz::opts {
   glz::float_precision float_max_write_precision{};
};

write_precision_t obj{};
std::string json_float = glz::write<float_opts{}>(obj);
expect(json_float == R"({"pi":3.1415927})") << json_float;

write_float64

Writes out numbers with a maximum precision of float64_t.

write_float_full

Writes out numbers with full precision (turns off higher level float precision wrappers).

float_format

Format floating-point numbers using std::format syntax (C++23). This wrapper provides per-member control over float formatting with the full flexibility of C++ format specifications.

struct coordinates
{
   double latitude{37.7749295};
   double longitude{-122.4194155};
   float altitude{10.5f};
};

template <>
struct glz::meta<coordinates>
{
   using T = coordinates;
   static constexpr auto value = glz::object(
      "lat", glz::float_format<&T::latitude, "{:.4f}">,
      "lon", glz::float_format<&T::longitude, "{:.4f}">,
      "alt", glz::float_format<&T::altitude, "{:.1f}">
   );
};

In use:

coordinates point{};
std::string json = glz::write_json(point).value_or("error");
// Output: {"lat":37.7749,"lon":-122.4194,"alt":10.5}

// Reading works normally - format only affects writing
coordinates point2{};
glz::read_json(point2, R"({"lat":40.7128,"lon":-74.0060,"alt":5.0})");

Format String Syntax

The format string follows std::format syntax. Common specifiers for floats:

Format Description Example Input Example Output
{:.2f} Fixed, 2 decimal places 3.14159 3.14
{:.0f} Fixed, no decimals (rounds) 3.7 4
{:.6f} Fixed, 6 decimal places 3.14159 3.141590
{:.2e} Scientific (lowercase) 1234567.89 1.23e+06
{:.3E} Scientific (uppercase) 0.000123 1.230E-04
{:.4g} General (auto-selects f/e) 0.0001234 0.0001234

Mixing Formatted and Unformatted Members

You can combine float_format with regular member pointers:

struct sensor_data
{
   double temperature{23.456789};  // High precision needed
   double display_value{23.456789}; // Formatted for display
   int sensor_id{42};
};

template <>
struct glz::meta<sensor_data>
{
   using T = sensor_data;
   static constexpr auto value = glz::object(
      "temperature", &T::temperature,  // Full precision (default behavior)
      "display", glz::float_format<&T::display_value, "{:.1f}">,  // Formatted
      "id", &T::sensor_id
   );
};

Output: {"temperature":23.456789,"display":23.5,"id":42}

Special Values

The wrapper handles special floating-point values using std::format behavior:

coordinates point{std::numeric_limits<double>::infinity(), -0.0, 0.0f};
// Output includes "inf" for infinity values

Comparison with Global float_format Option

Feature Per-member glz::float_format Global float_format option
Scope Individual members All floats in serialization
Flexibility Different format per member Same format for all
Usage glz::meta wrappers Custom glz::opts struct

Use the per-member wrapper when different fields need different formatting. Use the global option when all floats should be formatted the same way.

Global float_format Option

For formatting all floats globally, add float_format to a custom options struct:

struct format_opts : glz::opts
{
   static constexpr std::string_view float_format = "{:.2f}";
};

double pi = 3.14159265358979;
std::string json = glz::write<format_opts{}>(pi).value_or("error");
// Output: 3.14

[!NOTE] The float_format option uses std::format internally and requires C++23. The format string is validated at compile time via std::format_string.

Associated glz::opts for float precision

enum struct float_precision : uint8_t { full, float32 = 4, float64 = 8, float128 = 16 };

glz::opts

// The maximum precision type used for writing floats, higher precision floats will be cast down to this precision
float_precision float_max_write_precision{};

custom

Calls custom read and write std::functions, lambdas, or member functions.

struct custom_encoding
{
   uint64_t x{};
   std::string y{};
   std::array<uint32_t, 3> z{};

   void read_x(const std::string& s) { x = std::stoi(s); }

   uint64_t write_x() { return x; }

   void read_y(const std::string& s) { y = "hello" + s; }

   auto& write_z()
   {
      z[0] = 5;
      return z;
   }
};

template <>
struct glz::meta<custom_encoding>
{
   using T = custom_encoding;
   static constexpr auto value = object("x", custom<&T::read_x, &T::write_x>, //
                                        "y", custom<&T::read_y, &T::y>, //
                                        "z", custom<&T::z, &T::write_z>);
};

In use:

"custom_reading"_test = [] {
  custom_encoding obj{};
  std::string s = R"({"x":"3","y":"world","z":[1,2,3]})";
  expect(!glz::read_json(obj, s));
  expect(obj.x == 3);
  expect(obj.y == "helloworld");
  expect(obj.z == std::array<uint32_t, 3>{1, 2, 3});
};

"custom_writing"_test = [] {
  custom_encoding obj{};
  std::string s = R"({"x":"3","y":"world","z":[1,2,3]})";
  expect(!glz::read_json(obj, s));
  std::string out{};
  glz::write_json(obj, out);
  expect(out == R"({"x":3,"y":"helloworld","z":[5,2,3]})");
};

Another custom example

Showing use of constexpr lambdas for customization.

struct custom_buffer_input
{
   std::string str{};
};

template <>
struct glz::meta<custom_buffer_input>
{
   static constexpr auto read_x = [](custom_buffer_input& s, const std::string& input) { s.str = input; };
   static constexpr auto write_x = [](auto& s) -> auto& { return s.str; };
   static constexpr auto value = glz::object("str", glz::custom<read_x, write_x>);
};

In use:

std::string s = R"({"str":"Hello!"})";
custom_buffer_input obj{};
expect(!glz::read_json(obj, s));
expect(obj.str == "Hello!");
s.clear();
glz::write_json(obj, s);
expect(s == R"({"str":"Hello!"})");
expect(obj.str == "Hello!");

[!NOTE]

With read lambdas like [](custom_buffer_input& s, const std::string& input), both types must be concrete (cannot use auto), otherwise you'll get a compilation error noting this. The reason is that Glaze must be able to determine what type to decode into before passing the decoded value to input.

manage

Calls a read function after reading and calls a write function before writing.

glz::manage is useful for transforming state from a user facing format into a more complex or esoteric internal format.

struct manage_x
{
   std::vector<int> x{};
   std::vector<int> y{};

   bool read_x()
   {
      y = x;
      return true;
   }

   bool write_x()
   {
      x = y;
      return true;
   }
};

template <>
struct glz::meta<manage_x>
{
   using T = manage_x;
   static constexpr auto value = object("x", manage<&T::x, &T::read_x, &T::write_x>);
};

In use:

manage_x obj{};
std::string s = R"({"x":[1,2,3]})";
expect(!glz::read_json(obj, s));
expect(obj.y[0] == 1);
expect(obj.y[1] == 2);
obj.x.clear();
s.clear();
glz::write_json(obj, s);
expect(s == R"({"x":[1,2,3]})");
expect(obj.x[0] == 1);
expect(obj.x[1] == 2);

Another manage example

struct manage_x_lambda
{
   std::vector<int> x{};
   std::vector<int> y{};
};

template <>
struct glz::meta<manage_x_lambda>
{
   using T = manage_x_lambda;
   static constexpr auto read_x = [](auto& s) {
      s.y = s.x;
      return true;
   };
   static constexpr auto write_x = [](auto& s) {
      s.x = s.y;
      return true;
   };
   [[maybe_unused]] static constexpr auto value = object("x", manage<&T::x, read_x, write_x>);
};

In use:

manage_x_lambda obj{};
std::string s = R"({"x":[1,2,3]})";
expect(!glz::read_json(obj, s));
expect(obj.y[0] == 1);
expect(obj.y[1] == 2);
obj.x.clear();
s.clear();
glz::write_json(obj, s);
expect(s == R"({"x":[1,2,3]})");
expect(obj.x[0] == 1);
expect(obj.x[1] == 2);

skip_null_members_on_read

The skip_null_members_on_read option allows reading JSON or BEVE data with null values without requiring std::optional wrappers on your C++ types. When enabled, null values in the input are simply skipped, leaving the existing field values unchanged.

This option is particularly useful when: - You receive JSON from external sources that may include null values but you want to maintain default or existing values - You want to avoid wrapping all your types in std::optional just to handle occasional null values - You're implementing partial updates where null means "don't change this field"

Usage

Add bool skip_null_members_on_read = true; to a custom options struct:

struct Person {
   std::string name = "Unknown";
   int age = 0;
   double salary = 0.0;
};

template <>
struct glz::meta<Person> {
   using T = Person;
   static constexpr auto value = glz::object(&T::name, &T::age, &T::salary);
};

struct opts_skip_null : glz::opts {
   bool skip_null_members_on_read = true;
};

Example: Preserving Existing Values

Person person;
person.name = "Alice";
person.age = 30;
person.salary = 75000.0;

// JSON with null values
std::string json = R"({"name":null,"age":35,"salary":null})";

glz::read<opts_skip_null{}>(person, json);

// null fields were skipped, preserving existing values
expect(person.name == "Alice");    // Unchanged (was null in JSON)
expect(person.age == 35);          // Updated
expect(person.salary == 75000.0);  // Unchanged (was null in JSON)

Format Support

This option works with both JSON and BEVE formats:

JSON:

struct opts_skip_null_json : glz::opts {
   bool skip_null_members_on_read = true;
   // format = JSON (default)
};

BEVE:

struct opts_skip_null_beve : glz::opts {
   uint32_t format = glz::BEVE;
   bool skip_null_members_on_read = true;
};

Behavior

  • With option enabled: Null values in input are skipped; C++ field retains its existing value
  • With option disabled (default): Null values cause errors for non-nullable types, or reset std::optional types to empty

Comparison with std::optional

Without skip_null_members_on_read:

struct PersonWithOptional {
   std::optional<std::string> name;
   std::optional<int> age;
};

PersonWithOptional p;
p.name = "Alice";
p.age = 30;

glz::read_json(p, R"({"name":null,"age":35})");

// name is reset to empty by null
expect(!p.name.has_value());
expect(p.age == 35);

With skip_null_members_on_read:

struct Person {
   std::string name;  // No std::optional needed
   int age;
};

Person p;
p.name = "Alice";
p.age = 30;

glz::read<opts_skip_null{}>(p, R"({"name":null,"age":35})");

// name preserves existing value
expect(p.name == "Alice");
expect(p.age == 35);

[!NOTE] This option is not a core field in glz::opts. You must create a custom options struct that adds this field, as shown in the examples above.