Glaze Interfaces (Generic Library API)¶
Glaze has been designed to work as a generic interface for shared libraries and more. This is achieved through JSON pointer syntax access to memory.
Glaze allows a single header API (api.hpp) to be used for every shared library interface, greatly simplifying shared library handling.
Interfaces are simply Glaze object types. So whatever any JSON/binary interface can automatically be used as a library API.
Overview¶
The Glaze API system provides:
- Type-safe cross-compilation access: Access data structures and call functions across shared library boundaries with compile-time type checking
- Single universal API: One API header (
glaze/api/api.hpp) works for all shared libraries - JSON/Binary serialization: Built-in support for reading and writing data via JSON or BEVE (Binary Efficient Versatile Encoding)
- JSON pointer access: Navigate complex data structures using JSON pointer syntax (e.g.,
/path/to/field) - Member function invocation: Call member functions across API boundaries with full type safety
- Automatic pointer unwrapping: Transparent access through
std::unique_ptr,std::shared_ptr, and raw pointers
The API Interface¶
The core API is shown below. It is simple, yet incredibly powerful, allowing pretty much any C++ class to be manipulated across the API via JSON or binary, or even the class itself to be passed and safely cast on the other side.
namespace glz {
struct api {
api() noexcept = default;
api(const api&) noexcept = default;
api(api&&) noexcept = default;
api& operator=(const api&) noexcept = default;
api& operator=(api&&) noexcept = default;
virtual ~api() noexcept {}
// Get a typed pointer to a value at the given JSON pointer path
template <class T>
[[nodiscard]] T* get(const sv path) noexcept;
// Get a std::function from a member function or std::function across the API
template <class T>
[[nodiscard]] expected<T, error_code> get_fn(const sv path) noexcept;
// Call a member function across the API
template <class Ret, class... Args>
expected<func_return_t<Ret>, error_code> call(const sv path, Args&&... args) noexcept;
// Check if a path exists
[[nodiscard]] virtual bool contains(const sv path) noexcept = 0;
// Read data into the API object from JSON or BEVE
virtual bool read(const uint32_t format, const sv path, const sv data) noexcept = 0;
// Write data from the API object to JSON or BEVE
virtual bool write(const uint32_t format, const sv path, std::string& data) noexcept = 0;
// Get the last error message
[[nodiscard]] virtual const sv last_error() const noexcept { return error; }
// Low-level void* access (prefer templated get)
[[nodiscard]] virtual std::pair<void*, glz::hash_t> get(const sv path) noexcept = 0;
protected:
virtual bool caller(const sv path, const glz::hash_t type_hash, void*& ret,
std::span<void*> args) noexcept = 0;
virtual std::unique_ptr<void, void (*)(void*)> get_fn(const sv path,
const glz::hash_t type_hash) noexcept = 0;
std::string error{};
};
// Interface map type: maps API names to factory functions
using iface = std::map<std::string, std::function<std::shared_ptr<api>()>, std::less<>>;
// Function type for the glz_iface entry point
using iface_fn = std::shared_ptr<glz::iface> (*)();
}
Basic Usage¶
Accessing Data Members¶
You can access data members using the get method with JSON pointer syntax:
// Assume we have an API object 'io' of type std::shared_ptr<glz::api>
auto* x = io->get<int>("/x"); // Get pointer to int
auto* y = io->get<double>("/y"); // Get pointer to double
auto* z = io->get<std::vector<double>>("/z"); // Get pointer to vector
// Use the values
if (x) {
std::cout << "x = " << *x << "\n";
}
Reading and Writing Data¶
The API supports reading and writing entire objects or specific paths using JSON or BEVE:
// Write the entire object to JSON
std::string json_buffer;
io->write(glz::JSON, "", json_buffer);
// Write a specific path to JSON
std::string x_json;
io->write(glz::JSON, "/x", x_json);
// Read from JSON into the API object
std::string input_json = R"({"x": 42, "y": 3.14})";
io->read(glz::JSON, "", input_json);
// Read into a specific path
io->read(glz::JSON, "/x", "100");
// Use BEVE (binary format) for better performance
std::string beve_buffer;
io->write(glz::BEVE, "", beve_buffer);
io->read(glz::BEVE, "", beve_buffer);
Member Functions¶
Member functions can be registered with the metadata, which allows the function to be called across the API.
struct my_api {
int x = 7;
double y = 5.5;
int func() { return 5; }
double sum(double a, double b) { return a + b; }
void increment(int& value) { ++value; }
};
template <>
struct glz::meta<my_api> {
using T = my_api;
static constexpr auto value = object(
"x", &T::x,
"y", &T::y,
"func", &T::func,
"sum", &T::sum,
"increment", &T::increment
);
static constexpr std::string_view name = "my_api";
};
Calling Member Functions¶
The call method invokes member functions across the API. It returns an expected<T, error_code> for proper error handling:
std::shared_ptr<glz::iface> iface{ glz_iface()() };
auto io = (*iface)["my_api"]();
// Call function with no arguments
auto result = io->call<int>("/func");
if (result) {
std::cout << "func returned: " << result.value() << "\n";
}
// Call function with arguments
auto sum_result = io->call<double>("/sum", 7.0, 2.0);
if (sum_result) {
std::cout << "sum = " << sum_result.value() << "\n"; // prints 9.0
}
// Call function with reference parameters
int value = 10;
auto inc_result = io->call<void>("/increment", value);
// value is now 11
Getting std::function Objects¶
get_fn provides a means of getting a std::function from a member function across the API. This can be more efficient if you intend to call the same function multiple times:
// Get a std::function for a no-argument function
auto func = io->get_fn<std::function<int()>>("/func");
if (func) {
int result = func.value()();
std::cout << "result = " << result << "\n";
}
// Get a std::function for a multi-argument function
auto sum_fn = io->get_fn<std::function<double(double, double)>>("/sum");
if (sum_fn) {
double result = sum_fn.value()(7.0, 2.0);
std::cout << "sum = " << result << "\n";
}
// Get a std::function with reference parameters
auto inc_fn = io->get_fn<std::function<void(int&)>>("/increment");
if (inc_fn) {
int val = 5;
inc_fn.value()(val);
// val is now 6
}
std::function Support¶
Glaze allows std::function objects to be stored as members of your API types. This enables you to expose callable objects (lambdas, function objects, etc.) across the API boundary.
struct my_api {
int x = 7;
double y = 5.5;
// Store a std::function as a member
std::function<double(const int&, const double&)> f =
[](const auto& i, const auto& d) { return i * d; };
std::function<void()> init = [] {
std::cout << "Initialization complete!\n";
};
};
template <>
struct glz::meta<my_api> {
using T = my_api;
static constexpr auto value = object(
"x", &T::x,
"y", &T::y,
"f", &T::f,
"init", &T::init
);
static constexpr std::string_view name = "my_api";
};
You can then access and call these functions:
// Get and call a std::function
auto* f = io->get<std::function<double(const int&, const double&)>>("/f");
if (f) {
int x = 7;
double y = 5.5;
double result = (*f)(x, y); // result = 38.5
}
// Call a void function
auto* init = io->get<std::function<void()>>("/init");
if (init) {
(*init)(); // Prints "Initialization complete!"
}
Type Safety¶
A valid interface concern is binary compatibility between types. Glaze uses compile-time hashing of types that is able to catch a wide range of changes to classes or types that would cause binary incompatibility. These compile-time hashes are checked when accessing across the interface and provide a safeguard, much like a std::any_cast, but working across compilations.
Key difference from std::any_cast: std::any_cast does not guarantee any safety between separately compiled code, whereas Glaze adds significant type checking across compilations and versions of compilers.
The type hash is a 128-bit value computed from multiple type characteristics, providing robust detection of incompatible changes. When you call get<T>() or call<Ret>(), the system verifies that the type hash matches before allowing access, returning nullptr or an error if there's a mismatch.
Hash Collision Safety¶
With a 128-bit hash, the probability of collision is astronomically low: - With 10,000 registered types: approximately 1.47 × 10⁻³¹ chance of collision - For comparison, the probability of winning the Mega Millions lottery (1/302,575,350 ≈ 3.3 × 10⁻⁹) is vastly higher - You would need to win the lottery 2.25 × 10²² times (22 sextillion times) to equal the collision probability
This makes the 128-bit hash more than sufficient for any practical application.
Name¶
By default custom type names from glz::name_v will be "Unnamed". It is best practice to give types the same name as it has in C++, including the namespace (at least the local namespace).
Concepts exist for naming const, pointer (*), and reference (&), versions of types as they are used. Many standard library containers are also supported.
To add a name for your class, include it in the glz::meta:
Or, include it via local glaze meta:
Version¶
By default all types get a version of 0.0.1. The version tag allows the user to intentionally break API compatibility for a type when making changes that would not be caught by the compile time type checking.
Or, include it locally like name or value.
What Is Checked?¶
Glaze's type safety system performs comprehensive compile-time checks to detect binary incompatibilities. The following characteristics are hashed and checked when accessing types across the API:
Type Identity¶
namein meta: The type's registered name (e.g., "my_api")versionin meta: The semantic version of the type (major, minor, patch)sizeofthe type: The size of the type in bytes- Member variable names: All member variable names for object types (ensures field compatibility)
Compiler Information¶
- Compiler type: Distinguishes between clang, gcc, and msvc (different compilers may have different ABIs)
Type Traits¶
These standard C++ type traits are hashed to ensure binary compatibility:
Triviality and Layout
- std::is_trivial
- std::is_standard_layout
Construction
- std::is_default_constructible
- std::is_trivially_default_constructible
- std::is_nothrow_default_constructible
Copy and Move
- std::is_trivially_copyable
- std::is_move_constructible
- std::is_trivially_move_constructible
- std::is_nothrow_move_constructible
Destruction
- std::is_destructible
- std::is_trivially_destructible
- std::is_nothrow_destructible
Other Characteristics
- std::has_unique_object_representations
- std::is_polymorphic
- std::has_virtual_destructor
- std::is_aggregate
Any change to these characteristics between the library and the client will result in a hash mismatch, preventing unsafe access.
Automatic Pointer Unwrapping¶
Glaze automatically unwraps pointer types when accessing members through the API. This means you can access the pointed-to value directly without manually dereferencing:
struct my_api {
int x = 7;
int* x_ptr = &x;
std::unique_ptr<double> uptr = std::make_unique<double>(5.5);
std::shared_ptr<std::string> sptr = std::make_shared<std::string>("hello");
};
template <>
struct glz::meta<my_api> {
using T = my_api;
static constexpr auto value = object(
"x", &T::x,
"x_ptr", &T::x_ptr,
"uptr", &T::uptr,
"sptr", &T::sptr
);
static constexpr std::string_view name = "my_api";
};
Access the unwrapped values:
auto io = (*iface)["my_api"]();
// Access through raw pointer - returns pointer to the int, not pointer to pointer
auto* x = io->get<int>("/x_ptr");
if (x) {
std::cout << *x << "\n"; // prints 7
}
// Access through unique_ptr - returns pointer to the double
auto* y = io->get<double>("/uptr");
if (y) {
std::cout << *y << "\n"; // prints 5.5
}
// Access through shared_ptr - returns pointer to the string
auto* s = io->get<std::string>("/sptr");
if (s) {
std::cout << *s << "\n"; // prints "hello"
}
This unwrapping works recursively, so std::unique_ptr<std::shared_ptr<T>> would also be unwrapped to access T directly.
Supported Standard Library Types¶
The Glaze API system includes built-in support for many standard library types:
- Containers:
std::vector,std::array,std::deque,std::list - Associative containers:
std::map,std::unordered_map - Smart pointers:
std::unique_ptr,std::shared_ptr - Optional:
std::optional - Variant:
std::variant - Tuple:
std::tuple - Span:
std::span - Functional:
std::function - String:
std::string,std::string_view
All these types have proper name and hash support for type-safe cross-compilation access.
Error Handling¶
The API provides multiple mechanisms for error handling:
Return Values¶
get, get_fn, and call return values that indicate success or failure:
// get returns nullptr on failure
auto* x = io->get<int>("/nonexistent");
if (!x) {
std::cerr << "Failed to get value\n";
}
// get_fn and call return expected<T, error_code>
auto result = io->call<int>("/func");
if (!result) {
std::cerr << "Call failed with error code\n";
}
auto fn = io->get_fn<std::function<void()>>("/init");
if (!fn) {
std::cerr << "Failed to get function\n";
}
Error Messages¶
The last_error() method provides detailed error messages:
auto* x = io->get<int>("/wrong_path");
if (!x) {
std::cout << "Error: " << io->last_error() << "\n";
}
auto result = io->call<int>("/wrong_type");
if (!result) {
std::cout << "Error: " << io->last_error() << "\n";
}
Path Checking¶
Use contains() to check if a path exists before accessing:
Further Reading¶
For more detailed information on specific topics:
- Building Shared Libraries: Complete guide to creating and using shared libraries with Glaze, including CMake configuration, platform-specific details, and best practices
- Advanced API Usage: In-depth coverage of advanced patterns, performance optimization, type hashing, and cross-compilation safety
Example: Complete API Definition¶
Here's a complete example showing all major features:
#include "glaze/api/impl.hpp"
// Custom types
struct user {
std::string name;
int age;
};
template <>
struct glz::meta<user> {
using T = user;
static constexpr auto value = glz::object(
"name", &T::name,
"age", &T::age
);
static constexpr std::string_view name = "user";
};
// Main API type
struct user_management_api {
// Data members
std::vector<user> users;
int user_count = 0;
std::map<std::string, int> user_ids;
// Smart pointers
std::unique_ptr<std::string> api_key = std::make_unique<std::string>("secret");
// std::function members
std::function<bool(const user&)> validate_user = [](const user& u) {
return !u.name.empty() && u.age > 0;
};
// Member functions
void add_user(const user& u) {
users.push_back(u);
user_count++;
}
user& get_user(int index) {
return users.at(index);
}
int count_users() const {
return user_count;
}
std::vector<std::string> get_user_names() const {
std::vector<std::string> names;
for (const auto& u : users) {
names.push_back(u.name);
}
return names;
}
};
template <>
struct glz::meta<user_management_api> {
using T = user_management_api;
static constexpr auto value = glz::object(
"users", &T::users,
"user_count", &T::user_count,
"user_ids", &T::user_ids,
"api_key", &T::api_key,
"validate_user", &T::validate_user,
"add_user", &T::add_user,
"get_user", &T::get_user,
"count_users", &T::count_users,
"get_user_names", &T::get_user_names
);
static constexpr std::string_view name = "user_management_api";
static constexpr glz::version_t version{1, 0, 0};
};
// Export the API
glz::iface_fn glz_iface() noexcept {
return glz::make_iface<user_management_api>();
}
Usage:
#include "glaze/api/lib.hpp"
int main() {
// Load the library
glz::lib_loader lib("./libs");
auto api = lib["user_management_api"]();
// Add a user using a member function
user new_user{"Alice", 30};
auto result = api->call<void>("/add_user", new_user);
// Get user count
auto count = api->call<int>("/count_users");
std::cout << "User count: " << count.value() << "\n";
// Access data directly
auto* users = api->get<std::vector<user>>("/users");
for (const auto& u : *users) {
std::cout << u.name << " (" << u.age << ")\n";
}
// Call std::function
auto* validator = api->get<std::function<bool(const user&)>>("/validate_user");
user test_user{"Bob", 25};
if ((*validator)(test_user)) {
std::cout << "User is valid\n";
}
// Read/write the entire API state
std::string json;
api->write(glz::JSON, "", json);
std::cout << "API state:\n" << json << "\n";
// Modify and read back
api->read(glz::JSON, "", R"({"user_count": 10})");
auto* new_count = api->get<int>("/user_count");
std::cout << "New count: " << *new_count << "\n";
return 0;
}